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A B S T R A C T

Herein, supercapacitor developed using Mn-doped CoS thin films (1–5% Mn) were prepared using the successive
ionic layer adsorption and reaction (SILAR) method. The effect of the Mn-doped CoS thin films on the structural,
morphological, and supercapacitor properties were studied using X-ray diffraction (XRD), X-ray photoelectron
spectroscopy (XPS), field emission scanning electron microscopy (FE-SEM), transmission electron microscopy
(TEM), and electrochemical evaluation. Doping up to 3% Mn lead to improvements in peak intensity. Also, the
morphological results indicated that doping of Mn affected the CoS nanostructures. The 3% Mn-doped CoS
electrodes had an interconnected nanoflakes-like nanostructure, with a high porosity compared to the other
electrodes. XPS data strongly supported the XRD results. The Mn-doped CoS electrodes showed a higher capa-
citance (621 F g−1) than the other electrodes, and electrochemical impedance spectroscopy indicated that the
3% Mn-doped CoS electrode was highly conductive. The characteristics of the 3% Mn-doped CoS electrode
proved its applicability in supercapacitors.

1. Introduction

Recent years have experienced a substantial movement toward
more, clean, environmental pollutant-free, low-cost, and sustainable
energy sources. Several sustainable energy sources are available, like
solar cells [1], batteries [2], fuel cells [3], oil, supercapacitors [4], and
natural gas. Of these energy sources, solar cells, batteries, and super-
capacitors are most favorable applicants for the energy conversion and
storage [5–9], and all represent main energy sources for practical ap-
plications at the industry level in the portable electronic device industry
[5,10–13]. Among these devices, supercapacitors are more beneficial,
due to a high power density, long time charging-discharging [6–9], and
long-term cyclic stability relative to conventional batteries [14–19].
Supercapacitors usually classified into different types: electrochemical
double layer capacitors and pseudocapacitors [20].

Many researchers are currently working on the development of new
nanostructures, such as hierarchical, hybrid, and hetero-structured
nanomaterials, for improving the specific energy, power, and cycling
stability [5,21]. Previously, different binary and ternary phases of co-
balt sulfide/oxides, including several binary compounds, were in-
vestigated [22–26]. Recently, supercapacitors of ternary metal sulfides

revealed as an exciting electrode material, due to its high redox reaction
and high conductivity of NiCo2S4 electrodes [27].

Among the binary and ternary metal sulfide/semiconductors, binary
CoS electrodes are the most capable electrode nanomaterials for su-
percapacitor application because of their high redox reaction, multiple
and changeable valence states, as well as higher electrical conductivity.
Hu et al. [3] successfully synthesized a hierarchical hollow nanos-
tructure-like CoS electrode for electrochemical application, assembled
from nanocubes, nanosheets (NSs), and nanoparticles (NPs) that re-
sulted in double-shelled CoS-NP/CoS-NS constructs with exceptional
capacitance (980 F g−1) at current densities of 1 A g−1. Faber et al. [24]
prepared CoS2 thin films by a thermal method on a glass substrate for
solar cell applications and demonstrated that CoS2 displayed high
electrocatalytic activity in the electrolyte. Liu et al. [25] established a
facile hydrothermal method to prepare a porous nanocoral-like Co3S4
thin film directly on a Ni foam. Both, the crystal growth mechanism and
the development of the coral-like Co3S4 on Ni foam, were explained.
Subsequent electrochemical testing revealed the Co3S4 electrode for
supercapacitor has a large specific capacitance in KOH electrolyte. Xie
et al. [28] used a hydrothermal approach to prepare carbon-coated
CoS2 as a thermal battery electrode, which presented higher cell
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performance. CoS2 hollow spheres [29] have been synthesized as na-
nostructured electrodes for supercapacitor application, using a facile
solvothermal strategy. The as-prepared CoS2 hollow spheres demon-
strated extraordinary high discharge capacity and excellent cycling
stability, signifying its potential as anode material for lithium-ion

batteries.
In this paper, we report an innovative approach for the development

of the hierarchical nanostructure of Mn-doped CoS thin films, for ap-
plication as a supercapacitor electrode. The SILAR method successfully
manufactured pure and various (1%, 3% and 5%) Mn-doped CoS
electrodes. The structural, morphological, and supercapacitance of the
CoS and Mn doping on the thin film using the X-ray diffraction, X-ray
photoelectron spectroscopy, field emission scanning electron micro-
scopy, transmission electron microscopy, cyclic voltammetry, galva-
nostatic charge/discharge, and electrochemical impedance spectro-
scopy, respectively. EIS results indicate that the 3% Mn-doped CoS
electrode is more conductive than the other three electrodes, due to its
lower value of the solution and charge-transfer resistance.

2. Experimental details

2.1. Materials

0.2M CoSO4·7H2O (Cobalt (II) sulfate hydrate), 0.1M MnSO4 H2O
(Manganese sulfate monohydrate), 0.2 M Na2S (Sodium sulfide), and
NH4OH (Ammonium hydroxide).

2.2. Synthesis of Mn-doped CoS samples

In a typical experiment, CoSO4 and MnSO4 sources were dissolved
in double-distilled water (DDW), separately, and then combined at
various ratios (e.g., 49:1, 47:3, and 45:5mL of Co:Mn) to give final
solution A (50mL). We used double-distilled water for solutions B and
D, for the losing bounding of Co2+/Mn2+ and S2- ions. The last solution
was prepared by dissolving 1.68g Na2S in 50mL of DDW. Liquid am-
monia (NH3) was added to the combined solution of Co2+/Mn2+ under
constant magnetic stirring for 15min. Later, preparation of all experi-
mental solutions, as per solution A (CoSO4 and MnSO4) was used as a
cationic precursor and solution C (Na2S) as an anionic precursor.
Cleaned stainless-steel substrates were used as the working electrodes,
which were dipped in solution A for 20 s, for deposition of Co2+/Mn2+

ions. The Co2+/Mn2+ coated stainless-steel substrate was then im-
mersed in double-distilled water, for the losing bounding of Co2+/
Mn2+ ions. After washing away loosely bound ions, we used that
sample for deposition of S on the Co2+/Mn2+ -coated stainless-steel
substrate. After completion of 10 cycles of deposition, the CoS-coated
stainless-steel substrate was washed in double-distilled water and he-
ated at 60 °C for 6 h. A similar procedure was used to prepare the 1%,
3%, and 5% Mn-doped CoS samples. Fig. 1 shows the growth of CoS and
Mn-doped CoS thin films synthesized at different dopant (Mn)

Fig. 1. Possible growth of the Mn-doped CoS thin films synthesized at different dopant percentages of Mn (1%, 3%, and 5%).

Fig. 2. XRD patterns of (a) as-syntheized CoS, (b) 1% Mn doped CoS, (b) 3% Mn
doped CoS, (b) 5% Mn doped CoS thin films.

Fig. 3. Survey scan spectra of (a) as-syntheized CoS, (b) 1% Mn doped CoS, (b)
3% Mn doped CoS, (b) 5% Mn doped CoS thin films.
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percentages. All prepared samples were evaluated by structural, mor-
phological, and electrochemical testing.

The crystal structure of all prepared pure and Mn-doped CoS thin
films were characterized by XRD (Rigaku D/Max-KA), using Cu Kα ra-
diation. X-ray photoelectron spectroscopy (XPS; ULVAC-PHI Quantera
SXM) and an FE-SEM instrument (Hitachi, Model SU-70) was used to
examine the surface morphology and nanostructures of the as-synthe-
sized pure CoS and Mn-doped CoS thin films. The nanostructures of the
prepared pure CoS and Mn-doped CoS samples were studied by TEM
method (Jeol, Model JEM-2100) [30].

2.3. Electrochemical testing

The supercapacitor properties of the Mn doped CoS electrodes were
tested using an as-synthesized pure and Mn doped CoS samples as a
working electrode, which was synthesized at different doping percen-
tage of Mn [31]. A three-electrode cell was used, which included a pure
and Mn doped CoS electrode as the working electrode, Pt as the counter
electrode, and Ag/AgCl electrode as the reference electrode. The re-
ference electrode was connected to an Ag/AgCl electrode, and the
counter electrode probe was connected to a thin Pt electrode. The
working electrode probe connected to the Mn doped CoS electrode was
immersed in 3M KOH electrolyte solution. The supercapacitor prop-
erties were tested in the potential window −0.2–0.6 V. EIS examina-
tions were completed by applying an excitation voltage of 5mV to the
cells, and the frequency range was from 0.01 to 100 kHz [32]. In su-
percapacitor measurements, cyclic voltammetry (CV), galvanostatic
charge/discharge, and electrochemical impedance spectroscopy (EIS)

measurements were performed with a CHI 660E electrochemical
workstation in aqueous 3M KOH electrolyte [27,31,33]. Specific ca-
pacitances were calculated from the CV and galvanostatic discharge
curves, using the following relation, respectively:

=Cs IΔt mΔV/( ) (1)

∫
=C

IdV
mvΔVs (2)

where, Cs is the specific capacitance, I is the discharge time, Δt is the
discharge time, ΔV is the voltage range, and m is the mass of the active
materials of the electrode.

3. Results and discussion

3.1. X-ray diffraction (XRD) analysis

The XRD characterization technique allowed confirming the phase
and crystal structure of the as-synthesized and Mn-doped CoS samples.
The pure and Mn-doped CoS samples were synthesized using the SILAR
method at constant SILAR cycle, for the supercapacitor application.
Fig. 2 displays the XRD patterns of pure CoS thin films and those doped
with Mn (1%, 3%, and 5%), using SILAR cycles. The XRD patterns of the
Mn-doped CoS thin films are typical of CoS materials [32,33]. The CoS
thin films show peaks at 44.44° and 74.50°, which can be assigned to
the (102) and (202) planes of hexagonal CoS, and all peaks agree with
the literature data (JCPDS card number 65-3418) [34]. After doping the
CoS thin films with Mn, there is no change in the peak angles, only peak
intensity. The 3% Mn-doped CoS thin films reveal peaks of higher

Fig. 4. FE-SEM microimage of the as-synthesized CoS, 1% Mn doped CoS, 3% Mn doped CoS, and 5% Mn doped CoS thin films, respectively, inset shows the high
magnification images.
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intensity, suggesting that this sample has higher crystallinity and is
potentially better electronic conductivity relative to the pure CoS
sample and other Mn-doped samples [25,34].

3.2. X-ray photoelectron spectroscopy (XPS) analysis

XPS analysis was undertaken for further phase, chemical, and ele-
mental state identification of pure CoS and Mn:CoS samples. Fig. 3
shows the survey spectrum of pure CoS and Mn-doped CoS thin films.
The pure CoS thin films demonstrated binding energies of 162.68 eV,
531.82 eV, 654.15 eV, and 780.63 eV, corresponding to S 2p, O 1s, Mn
2p, and Co 2p, respectively [25]. The results indicate that all elements
are present in the as-prepared and Mn-doped samples. The intense
peaks at 780.63 eV and 795.97 eV (Fig. 3a–d) well-fit to the Co 2p1/2
and Co 2p3/2 spin-orbits doublets of Co2+ and Co3+, respectively [32].
We observed greater intensity in the peaks after adding dopant (Mn) to
the CoS thin films as compared to the pure CoS samples. Also, the peak
at 531.82 eV has a higher intensity than those corresponding to the
Co2+ and Mn2+ elements, which specifies the existence of more ad-
sorbed O1s elements on the surface of pure CoS and Mn-doped thin
films [35]. The binding energies at 160.68 eV and 168.98 eV concur
with the S 2p3/2 and S 2p1/2 energy levels of CoS thin films. Hence, the
XPS analysis confirmed the phase formation of CoS thin films, as re-
ported previously [25,35,36].

3.3. Field emission scanning electron microscopy (FE-SEM) analysis

FE-SEM provided detailed information regarding the surface mor-
phology of the CoS and Mn-doped thin films. Fig. 4 displays the FE-SEM

micro images of the pure CoS and Mn-doped thin films, at various
magnifications, synthesized using the SILAR method. The micrograph
of the pure CoS sample (Fig. 4a) illustrates the growing stage of vertical
interconnected nanoflakes-like nanostructures on the stainless-steel
substrate, but the sample is not fully covered, indicating poor or in-
sufficient growth of Co and S elements on the stainless-steel [37]. After
Mn doping, the thin films are fully covered with diverse nanostructures
of interconnected NPs, interconnected nanoflakes (NFs), and NPs cov-
ering NFs. Fig. 4b and c shows the FE-SEM micrograph of 1% Mn-doped
thin films, as the NP start to aggregate and convert to the porous NFs-
like nanostructure. Interconnected chain of vertical nanoflakes-like
nanostructures can be seen growing on the stainless-steel substrate in
the 3% Mn-doped thin films. The size and thickness of the individual
nanoflake is much smaller than the other nanostructures, suggesting the
3% Mn-doped film is suitable for the electrochemical reaction because
this type of surface morphology provides the maximum surface area of
the sample. Further increasing the Mn dopant percentage to 5% Mn
leads to the overgrowth of the nanostructure (Fig. 4d), which is not
applicable for the supercapacitor application as compared to the 3% Mn
[37–39].

3.4. Transmission electron microscopy (TEM) analysis

TEM analysis was performed to gain more insight into the surface
morphology of the as-synthesized pure and Mn-doped thin films, which,
as mentioned above, were fabricated using the SILAR method, for su-
percapacitor application. Visualization of the pure CoS thin film
(Fig. 5a) reveals an average length of nanosheets of 110–125 nm, and a
porous surface, consistent with the FE-SEM images [40]. Fig. 5b–d

Fig. 5. TEM images of (a) as-synthesized CoS, (b) 1% Mn doped CoS, (b) 3% Mn doped CoS, (b) 5% Mn doped CoS thin films.
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shows the TEM images of 1%, 3%, and 5% Mn-doped thin films, re-
spectively. At 3% Mn dopant (Fig. 5c), a highly porous nanostructure is
evident, indicating that it provides a higher reactive surface area as
compared to the other electrodes [32,33], which is more useful for
electrochemical testing for the supercapacitor application. Therefore,
we concluded the 3% Mn-doped CoS2 electrode is the most suitable for
the measurement of the electrochemical and supercapacitor properties
[1,32,33]. All images obtained by TEM corroborated those obtained by

FE-SEM.

3.5. Electrochemical testing

The supercapacitor properties of the pure CoS, and 1%, 3%, and 5%
Mn-doped electrodes were individually evaluated using the CV tech-
nique at 100mV s−1 scan rate. Fig. S1a shows the CV curves at
100mV s−1 scan rate, for pure CoS and 1%, 3%, and 5% Mn-doped CoS
electrodes, respectively, in the 0.0–0.5 V range. It is seen that the
doping percentages affect both redox peaks of the CoS electrodes [41].
The active deposited mass of pure CoS and 1%, 3%, and 5% Mn-doped
CoS electrodes at constant SILAR cycles, was found to be 0.27, 0.29, and
0.23, 0.20mg cm−2, respectively. The 3% Mn-doped CoS electrode
displayed higher current density, which is proportional to the specific
capacitance of the sample. At 100mV s−1 scan rate, the specific capa-
citance is 288 F g−1 for pure CoS, and 347, 621, and 433 F g−1 for 1%,
3%, and 5% Mn-doped CoS electrodes, respectively (Fig. S1b). The
evaluated results prove that the 3% Mn-doped CoS electrode is a su-
perior electrode material with high capacitance because this composi-
tion resulted in a comparatively higher surface area. Fig. 6a shows the
CV curves (scan rate range of 10–100mV s−1) of 3% Mn-doped elec-
trodes in 3M KOH electrolyte. When tested in the range 0.0–0.5 V, the
3% Mn-doped CoS has superior capacitance compared to pure CoS, 1%
Mn, and 5% Mn [42]. The resultant scan rates increase as the scan rate
increases, demonstrating 3% Mn-doped electrodes have good capacitive
nature, which is attributed to the high areal active surfaces of the three-

Fig. 6. (a) CV curves of 3% Mn doped CoS thin films at different scan rates from 10 to 100mV s−1
, respectively, (b) Specific capacitance of 3%Mn:CoS electrode at

different scan rates from 10m to 100mV s−1, (c) Galvanostatic charge-discharge of 3% Mn:CoS electrode at different current densities from 0.5 to 2mA cm−2, (d)
Specific capacitance of 3% Mn doped CoS electrode at different current densities.

Fig. 7. Nyquist plot of 3% Mn doped CoS electrode.
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dimensional interconnected NFs of the 3% Mn-doped electrode and
easy transfer of ions from the very thin NFs to the counter electrode
[22]. At the scan rate range of 10–100mV s−1, 3% Mn-doped CoS
electrode possesses a specific capacitance of 621 F g−1 at 10mV s−1

(Fig. 6b). The galvanostatic charge/discharge study was conducted at
different current densities (0.5–2.0mA cm−2), to supplement calcula-
tion of the specific capacitance of the 3% Mn-doped CoS electrode. As
evident in Fig. 6c, the galvanostatic charge/discharge curves indicate
3% Mn-doped electrode has a good charging/discharging capacity
[41,43]. The calculated value of specific capacitance is 566 F g−1 at a
current density of 0.5 mA cm−2 (Fig. 6d), which is similar to that re-
ported in the literature [42,43]. EIS measurements have been used to
identify the electrochemical behaviors of the 3% Mn-doped CoS elec-
trode in 3M KOH electrolyte. Fig. 7 displays the Nyquist plot of the 3%
Mn-doped electrodes, highlighting a very low charge transfer resistance
and solution resistance, which indicates that the electrode shows a
rapid ion exchange process, due to the interconnected nanostructure
that provided a highly effective reactive surface [31,42–44].

4. Conclusions

We deposited Mn-doped CoS thin films on a stainless-steel substrate,
for supercapacitor application, by using an easy and low-cost SILAR
method. The typical nanostructure provides many advantages of Mn-
doped CoS electrodes, such as a high surface area, porous surface, low
solution resistance, and short diffusion path of ions. After measure-
ments of the supercapacitor properties, the 3% Mn-doped CoS electrode
shows superior performance with a specific capacitance of 621 F g−1 at
10 mV s−1, in 3M KOH electrolyte. The calculated specific capacitance
is almost two times higher than the pure CoS and the other Mn-doped
electrodes, indicating that doping of Mn affects the supercapacitor
performance. Based on the results, the 3% Mn-doped CoS electrode is a
promising composition for high supercapacitor application, and the
SILAR method enables the design of new nanostructures for other
transition metal oxide/sulfides.
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